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Abstract. Difference families are traditionally built using groups as their ba-

sis. This paper looks at what sort of generalised difference family constructions
could be made, using the standard basis of translation and difference.

The main result is that minimal requirements on the structure force nothing

that groups cannot give, at least in the finite case. Thus all difference families
arise from groups.

1. Introduction

Difference families are used to construct 2–designs. They are based upon groups,
usually additively written. The essential operations are the difference operation and
the translation. The differences need to remain invariant under translation.

Quasigroups and loops are generalisations of groups that do not require the
operation to be associative. A quasigroup is a 2–algebra (S, +) such that for all
a, b ∈ S all equations

a + x = b y + a = b

have unique solutions for x and y. The Cayley tables of such algebras form Latin
squares. There are many special cases of such algebras. In particular a loop is a
quasigroup with a two–sided identity e ∈ S. A group is an associative loop. See for
instance [4].

Quasigroups can be obtained by twisting a group in some way. A simple example
is to take an additive group (G, +) and to use the subtraction operation to obtain
a quasigroup (G,−) that is not associative. For another example, given a field K,
let k ∈ K, k 6= 0, 1 be arbitrary but fixed. Define a ∗ b = ka+(1− k)b. Then (K, ∗)
is a quasigroup, in general nonassociative.

There exists a more general form of equivalence between quasigroups, or more
general algebras. Two groupoids (S, +) and (T, ∗) are isotopic if there exist bi-
jections α, β, γ : S → T such that for all a, b ∈ S α(a + b) = β(a) ∗ γ(b). An
isomorphism is an isotropism with all bijections identical.

The isotope of a quasigroup is a quasigroup. In particular, many quasigroups
are isotopic to groups.

In the following we will first look at difference families and determine what prop-
erties are needed to have in order to be useful for such a construction. We demon-
strate that such a structure is equivalent to a class of quasigroups. We will then
look at this class of algebras and see that they are all simply obtained from groups.
The difference family structures come directly from that group. Our main results
are Proposition 17 which gives an explicit construction of all such quasigroups and
Proposition 18 demonstrating that the difference families are identical.

In general we are only interested in finite structures. However, almost all the
results here also apply for infinite structures. We will note the use of finiteness
arguments, which are only used in section 3.
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2. Difference Families

A (set) 2–design is a pair (V,B), where B is a set of subsets of V all of size k
and for all pairs a, b ∈ V, a 6= b, |{B ∈ B : a, b ∈ B}| = λ for some constants k and
λ. The number 2 in the name refers to the pairs of elements a, b. There are many
variations on this definition, see e.g. [1] for details.

Given a (2)–algebra (N,+) and a set of subsets B of N , define development of
B in N dev(B) to be the collection {B + n : B ∈ B, n ∈ N}, possibly containing
duplicates. The set development is the collection with no duplicates.

Given a group (N,+), not neccesarily abelian, and a set B = {Bi|i = 1, . . . , s}
of subsets of N , called base blocks, such that

• all Bi have the same size
• for all B,C ∈ B, n ∈ N , B + n = C ⇔ B = C and n = 0
• there exists some λ such that for all nonzero d ∈ N , |{(B, a, b)|B ∈ B, a, b ∈

B, a− b = d}| = λ

Then N and B form a difference family, (DF).

Theorem 1 (see e.g. [1]). Let B be a difference family on a group (N,+). Then
devB is a set 2-design.

In the proof of this result, we can see that the requirement that (N,+) be a
group is too strong. We are only using the translation property and the difference
operation. Thus it would seem that this construction can be generalised to be based
upon other structures. The following result does this.

Theorem 2. Let N be a set with binary operation − (difference) and unary oper-
ations ti ∈ T (translations) and B a set of subsets of N such that

• for all a, b ∈ N there is a unique ti such that tia = b.
• for all a, b ∈ N , the equation a− x = b has a unique solution.
• a− b = tia− tib for all a, b ∈ N , for all ti.
• there exists some λ such that for all d ∈ N such that d = a − b for some

a, b ∈ N , ∆(d) = {(B, a, b)|B ∈ B, a, b ∈ B, a 6= b, a− b = d}, |∆(d)| = λ
• there exists some integer k such that |tiB| = k for all ti for all B ∈ B.
• tiB = tjC for B,C ∈ B implies i = j and B = C.

Then devB = {tiB : B ∈ B} is a set 2-design.

Proof. All the blocks in devB have size k by construction. They are all distinct by
the final requirement. We need only show that the number of blocks on a pair of
points is constant.

Let a 6= b ∈ N . We show that |∆(a − b)| = |{tiB : ti ∈ T,B ∈ B, a, b,∈ tiB}|.
There are exactly λ triples (B,α, β) in ∆(a− b) such that α, β ∈ B, α− β = a− b.
For each (B,α, β) in ∆(a− b) there is a unique ti such that tiα = a. We know

a− b = α− β = tiα− tiβ = a− tiβ

so by the unique solution property of difference, b = tiβ. Thus a, b ∈ tiB, so we
have a mapping Θ from ∆(a − b) into {tiB : ti ∈ T,B ∈ B, a, b,∈ tiB}. This map
Θ is injective by the final condition.

We now show that Θ is surjective. Let a, b ∈ tiB. Then there exist some α, β ∈ B
such that a = tiα, b = tiβ,

α− β = tiα− tiβ = a− b

so (B,α, β) ∈ ∆(a− b), and tiB is in the image of Θ. Thus Θ is a bijection and we
are done. �

We now have a generalised form of difference family. In the next sections we will
investigate the algebraic properties underlying this result.
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3. Algebraic Properties

Let us investigate the algebraic properties of the results above. For this section,
let N , ti and − be as defined in Theorem 2 above.

Lemma 3. There exists a unique t0 that is the identity mapping on N .

Proof. Fix a ∈ N . By the unique solution property of translations, there is some
t0 ∈ T such that t0a = a. Then for all b ∈ N , a − b = t0a − t0b = a − t0b, so by
the unique solution property of differences, t0b = b and t0 is the identity map on
N . �

Theorem 4. If N is finite then (N,−) is a quasigroup.

Proof. We know a − x = b has a unique solution. Suppose x − a = b has two
solutions, x1 6= x2. There is some ti such that tix1 = x2. Then

x1 − a = tix1 − tia = x2 − tia = x2 − a = b

Then x2 − x = b has solutions a and tia for x. Thus tia = a so ti is the identity
and x1 = x2 thus x− a = b has at most one solution. By finiteness, it has exactly
one solution, so (N,−) is a quasigroup. �

Definition 5. Fix a0 ∈ N . For all b ∈ N , let tb ∈ T such that tba0 = b. This is
unique. Define x + y := tyx.

Theorem 6. If N is finite then (N,+) is a quasigroup.

Proof. By the uniqueness property above, a+x = b has a unique solution. Suppose
x+a = b has two solutions x1, x2. Then x1−x2 = (x1+a)−(x2+a) = b−b. There is
some unique k such that b+k = x1. Then x1−x2 = b−b = (b+k)−(b+k) = x1−x1

so x1 = x2 by quasigroup property of (N,−), so x+a = b has at most one solution.
By finteness it has exactly one, and (N,+) is a quasigroup. �

Thus we have shown that the structure used in Theorem 2 can be seen as a set
with two operations that form quasigroups. We formalise this, as it is clear that
from such a pair of quasigroups, we can form the translations used in Theorem 2.

Definition 7. A difference family biquasigroup (DFBQ) (N,+,−) is a (2, 2)–
algebra where each operation gives a quasigroup and the equation a − b = (a +
c)− (b + c) is satisfied.

Lemma 8. A DFBQ has a right additive identity. There is a constant e ∈ N such
that e = a− a for all a.

Proof. Let a, ā ∈ N such that a + ā = a. Then for any b,

b− a = (b + ā)− (a + ā) = (b + ā)− a.

By the quasigroup property, b = b + ā. This works for all a, b, so ā is constant, and
this constant is a right identity with respect to addition. This identity is unique by
the quasigroup property.

Fix some a ∈ N . Define e := a− a. For all b ∈ N , there exists some c such that
a + c = b. Thus b− b = (a + c)− (a + c) = a− a = e and the second statement is
proved. �

Note that the first part also follows from Lemma 3 above. We may write a DFBQ
as (N,+,−, o, e) where o is a right additive identity and e = a− a for all a.
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4. In general

In this section we examine the structure of a general DFBQ. We will use these
results in the next section to demonstrate that a general DFBQ is isotopic to a
group and that the resulting designs are identical.

Definition 9. A collection B and a DFBQ (N,+,−) such that:

• there exists an integer k such that |B| = k for all B ∈ B
• there exists some λ such that for all d ∈ N such that d = a − b for some

a, b ∈ N , ∆(d) = {(B, a, b)|B ∈ B, a, b ∈ B, a 6= b, a− b = d}, |∆(d)| = λ
• B + b = C + c for B,C ∈ B, b, c ∈ N implies B = C and b = c.

is called a quasigroup difference family (QDF)

It is clear that such a QDF will give a 2-design using the same methods as
Theorem 2.

Proposition 10. Let (N,+,−, o, e) be a DFBQ. Let ē be such that e + ē = o, then
define φ : x 7→ x + ē and α : x 7→ x− e. Define the operations

a⊕ b = φ−1(φa + φb)(1)
a	 b = α−1(a− b)(2)

Then (N,⊕,	, e, e) is a DFBQ with a	 e = a for all a ∈ N .

Proof. (N,⊕) and (N,	) are quasigroups by isotopism. Note that φa− φb = a− b
by the DFBQ property, so φ−1a− φ−1b = a− b. Then

(a⊕ c)	 (b⊕ c) = α−1((a⊕ c)− (b⊕ c)(3)
= α−1((φa + φc)− (φb + φc))(4)
= α−1(φa− φb) = α−1(a− b)(5)
= a	 b(6)

so we have the DFBQ property. The constants are both e as given by a ⊕ e =
φ−1(φa + φe) = φ−1(φa + o) = a and a	 a = α−1(a− a) = α−1(e) = e.

The second claim is seen by αa = a− e thus a	 e = α−1(a− e) = a. �

Note that a	 b = φa	 φb. This will be important for the next result.

Proposition 11. Let (N,⊕,	, e, e) be a DFBQ with a 	 e = a for all a ∈ N , φ
a permutation of N such that a 	 b = φa 	 φb, α a permutation of N such that
αe = e. Define

a + b = φ(φ−1a⊕ φ−1b)(7)
a− b = α(φ−1a	 φ−1b)(8)

Let o := φe. Then (N,+,−, o, e) is a DFBQ, α : a 7→ a − e, φ : a 7→ a + ē where
e + ē = o.

Proof. (N,+) and (N,−) are quasigroups by isotopism. The DFBQ property is
seen by

(a + c)− (b + c) = α(φ−1φ(φ−1a⊕ φ−1c)	 φ−1φ(φ−1b⊕ φ−1c))(9)
= α((φ−1a⊕ φ−1c)	 (φ−1b⊕ φ−1c))(10)
= α(φ−1a	 φ−1b)(11)
= a− b(12)

The constants are given by a + o = φ(φ−1a ⊕ φ−1o) = φ(φ−1a ⊕ e) = a and
a− a = α(a	 a) = αe = e.
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Then α(a) = α(a	 e) = α(φ−1a	 φ−1e) = a− e. Let ē be such that e + ē = o.
Then e + ē = φ(φ−1e⊕ φ−1ē) = o = φe so φ−1e⊕ φ−1ē = e. Then

a = a	 e = φ−1a	 φ−1e(13)
= (φ−1a⊕ φ−1ē)	 (φ−1e⊕ φ−1ē)(14)
= (φ−1a⊕ φ−1ē)	 e(15)
= φ−1a⊕ φ−1ē(16)
= φ−1(a + ē)(17)

Thus φa = a + ē and we are done. �

We will need the following for the final results.

Definition 12. A quasigroup (Q, ◦) is a Ward quasigroup if (a ◦ c) ◦ (b ◦ c) = a ◦ b
for all a, b, c ∈ Q.

Theorem 13 ([6]). Let (Q, ◦) be a Ward quasigroup. Then there exists a unique
element e ∈ Q such that for all x ∈ Q, x ◦ x = e. Define x̄ = e ◦ x and x ∗ y = x ◦ ȳ
for all x, y ∈ Q. Then (Q, ∗,̄ ) is a group, and x ◦ y = x ∗ ȳ.

Proposition 14. Let (N,+,−, e, e) be a DF biquasigroup with a− e = a for all a.
Then it is isotopic to a DF group.

Proof. Let I be the permutation of N such that a + Ia = e. Then

(18) a− b = (a + Ib)− (b + Ib) = (a + Ib)− e = a + Ib.

Thus (a− b)− (c− b) = (a + Ib)− (c + Ib) = a− c so (N,−) is a Ward quasigroup.
Thus there is a group (N, ∗, ·−1) with a− b = a ∗ b−1 and a + b = a ∗ (I−1b)−1 by
equation (18). �

The converse of this result holds too. The proof is simple calculation.

Lemma 15. Let (N, ∗, 1) be a group, I a permutation of N fixing 1. Define

a + b = a ∗ (Ib)−1(19)
a− b = a ∗ b−1(20)

Then (N,+,−, 1, 1) is a DF biquasigroup with a− 1 = a for all a.

Thus we obtain information on the form of the map φ in Proposition 11. We know
the form of the operations from Prop 14 so we can make some explicit statements
about the structure.

Corollary 16. Let (N,⊕,	, e, e) and φ be as for Proposition 11. Let the operation
∗ be as from Prop 14. Then there exists some k ∈ N such that the map φ is of the
form φ(a) = a ∗ k.

Conversely, given (N,⊕,	, e, e) as in Prop 11 and a group operation ∗, select
any element k ∈ N . Then φ(a) := a ∗ k satisfies the requirements of Prop 11.

Proof. By Prop 14 we know that a 	 b = a ∗ b−1. Since φa 	 φb = a 	 b we have
φa ∗ (φb)−1 = a ∗ b−1. Let b = 1 and we obtain φa ∗ (φ1)−1 = a so φa = a ∗ φ1.
Letting k := φ1 we are done.

The converse is seen by taking any element k ∈ N . Define φa := a ∗ k. Then
φa	 φb = (a ∗ k) ∗ (b ∗ k)−1 = a ∗ b−1 = a	 b so we are done. �
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5. General Explicit Descriptions

In this section, we will look at explicit descriptions of DFBQs and QDFs. Using
the results above, we know the structure of all DFBQs.

Proposition 17. Let (N, ∗, 1) be a group. Let α, β be permutations of N , α1 = 1.
Define

a + b = a ∗ βb(21)
o = β−1(1)(22)

a− b = α(a ∗ b−1)(23)

Then (N,+,−, o, 1) is a DFBQ and all DFBQs are of this form.

Proof. The forward direction is a calculation and is clear. Let (N,+,−, o, e) be a
DFBQ. We demonstrate that there exists a group structure (N, ∗,−1, 1) and per-
mutations α, β of N as above.

By Proposition 10 there exist φ and α such that defining

a⊕ b := φ−1(φa + φb)(24)
a	 b := α−1(a− b)(25)

we obtain (N,⊕,	, e, e) is a DFBQ with a	 e = e. By Proposition 14 there exists
some group (N, ∗,−1, 1) such that e = 1, a	 b = a ∗ b−1 and a⊕ b = a ∗ (I−1(b))−1.
Thus

a + b = φ(φ−1a ∗ (I−1(φ−1b))−1)(26)
a− b = α(a ∗ b−1)(27)

By Corollary 16 we know that φx = x ∗ k, φ−1x = x ∗ k−1. Thus

a + b = ((a ∗ k−1) ∗ (I−1(b ∗ k−1))−1) ∗ k(28)
= a ∗ k−1 ∗ (I−1(b ∗ k−1))−1 ∗ k(29)
= a ∗ β(b)(30)

where β(x) = k−1 ∗ (I−1(x ∗ k−1))−1 ∗ k is a permutation of N . Since a + β−1(1) =
a∗β(β−1(1)) = a∗1 = a we know β−1(1) is the unique right identity, so o = β−1(1).
The permutation α fixes e which is seen to be 1 and we are done. �

This final result shows that all difference family structures are in fact group
structures.

Proposition 18. The quasigroup development and the group development of a
difference family are identical.

Proof. Suppose we have a QDF B on a DFBQ (N,+,−, o, e). By Prop 17 above,
we know that there is a group operation ∗ and some permutation of N such that
a + b = a ∗ β(b). Thus if B is a subset of N ,

dev+B = {B + n : n ∈ N} = {B ∗ β(n) : n ∈ N} = {B ∗ n : n ∈ N} = dev∗B

so we obtain exactly the same set of sets. Thus dev+B = dev∗B and we are done. �

6. Conclusion

It would be desirable to generalise the definition of a difference family so as to
use more general structures to derive designs using this formalism. With simple and
reasonable requirements for our difference family structures, we have shown that we
obtain a biquasigroup algebra and that such algebraic structures must be isotopic
to groups. It is also seen that the resulting designs are identical.

Questions remain open as to whether the requirements that we posit are all nec-
essary. It may be reasonable to use a simpler structure for the difference operation,
but I cannot see how.
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Applications remain open here. For instance, planar nearrings have been shown
to possess a difference family structure. Questions about nonassociative planar
nearrings have been raised, and it might be appropriate to use these results to de-
duce structure about the nearrings that could be so defined. It also remains open
as to the properties of infinite generalised difference families, where the translations
and difference operation do not form a proper quasigroup. The investigation of
neardomains and K–loops [3] suggests that there are some strange and interest-
ing properties when we drop the finiteness restriction. In particular there may be
connections between the generalisation of nearfields to neardomains and the gener-
alisation to planar nearrings and Ferrero pairs [2, 5], which may be connected to
the construction of nonassociative difference families.
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